(6n)^2-15=6(5)^2-15

Simple and best practice solution for (6n)^2-15=6(5)^2-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6n)^2-15=6(5)^2-15 equation:



(6n)^2-15=6(5)^2-15
We move all terms to the left:
(6n)^2-15-(6(5)^2-15)=0
We add all the numbers together, and all the variables
6n^2-4225=0
a = 6; b = 0; c = -4225;
Δ = b2-4ac
Δ = 02-4·6·(-4225)
Δ = 101400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{101400}=\sqrt{16900*6}=\sqrt{16900}*\sqrt{6}=130\sqrt{6}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-130\sqrt{6}}{2*6}=\frac{0-130\sqrt{6}}{12} =-\frac{130\sqrt{6}}{12} =-\frac{65\sqrt{6}}{6} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+130\sqrt{6}}{2*6}=\frac{0+130\sqrt{6}}{12} =\frac{130\sqrt{6}}{12} =\frac{65\sqrt{6}}{6} $

See similar equations:

| 6t-3=-7+10t | | 5x+23)+(17x-41)=180 | | 3(6p+4)=-114 | | b+259=7 | | -0.5x+3.5=1.5x | | 6m+7=5m-5+9 | | -g-10=10+9g | | y=15,000(1.04)^25 | | 18+8f=34 | | 1-10v=-6v+5 | | -14=7w+2w-4=8.5 | | cc35=250 | | 7(m+13)=98 | | -3x-4(-2x+3)=28 | | 3+8z=7z | | 7x+2=-14-x | | -4g+8=9-5g | | 1.37*w=0 | | -3g=-5G+10 | | 6x-x-9x=-21+5 | | n/(1/3)=(2+(1/2)) | | 3/4x+5=3/4x-9 | | 3x+6=-6x—6 | | 0.5x-3=-3.5+(1.5x) | | 47+4r+3+86=180 | | 5.5^2+x^2=30.5^2 | | 22=v+17 | | 55+25x=190 | | 3/4x+5=3/x-9 | | 8=-12+m | | 5^(2x-3)=3^(4x) | | 3=4x+27 |

Equations solver categories